High-frequency sampling and kernel estimation for continuous-time moving average processes
نویسندگان
چکیده
منابع مشابه
On continuous-time autoregressive fractionally integrated moving average processes
In this paper, we consider a continuous-time autoregressive fractionally integrated moving average (CARFIMA) model, which is defined as the stationary solution of a stochastic differential equation driven by a standard fractional Brownian motion. Like the discrete-time ARFIMA model, the CARFIMA model is useful for studying time series with short memory, long memory and antipersistence. We inves...
متن کاملDissertation Time - Frequency - Autoregressive - Moving - Average Modeling of Nonstationary Processes
This thesis introduces time-frequency-autoregressive-moving-average (TFARMA) models for underspread nonstationary stochastic processes (i.e., nonstationary processes with rapidly decaying TF correlations). TFARMAmodels are parsimonious as well as physically intuitive and meaningful because they are formulated in terms of time shifts (delays) and Doppler frequency shifts. They are a subclass of ...
متن کاملMoving Average Processes with Infinite Variance
The sample autocorrelation function (acf) of a stationary process has played a central statistical role in traditional time series analysis, where the assumption is made that the marginal distribution has a second moment. Now, the classical methods based on acf are not applicable in heavy tailed modeling. Using the codifference function as dependence measure for such processes be shown it be as...
متن کاملHigh frequency sampling of a continuous-time ARMA process
Continuous-time autoregressive moving average (CARMA) processes have recently been used widely in the modeling of non-uniformly spaced data and as a tool for dealing with high-frequency data of the form Yn∆, n = 0, 1, 2, . . ., where ∆ is small and positive. Such data occur in many fields of application, particularly in finance and the study of turbulence. This paper is concerned with the chara...
متن کاملMoving Average Processes
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Blackwell Publishing and Royal Statistical Society are col...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Time Series Analysis
سال: 2013
ISSN: 0143-9782
DOI: 10.1111/jtsa.12022